CALCULUS BC WORKSHEET ON MEAN VALUE THEOREM

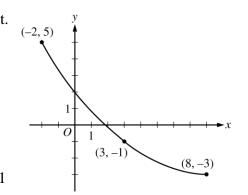
Work the following on **<u>notebook</u>** paper.

1. Let f be the function given by $f(x) = x^3 - 2x^2 + 5x - 16$. For what value of x in the closed interval [0,5] does the instantaneous rate of change of f equal the average rate of change of f over that interval?

2. A portion of the graph of a differentiable function f is shown to the right. If the value c = 3 satisfies the conclusion of the Mean Value Theorem applied to f on the open interval -2 < x < 8, what is the slope of the line tangent to the graph of f at x = 3?

3. (Mult. Choice) The function g is continuous on the closed interval [1,4] with g(1) = 5 and g(4) = 8. Of the following conditions, which would guarantee that there is a number c in the open interval (1,4) where g'(c) = 1

- (A) g is increasing on the closed interval [1, 4].
- (B) g is differentiable on the open interval (1,4).
- (C) g has a maximum value on the closed interval [1,4].
- (D) The graph of g has at least one horizontal tangent in the open interval (1,4).


4. Let *f* be the function given by $f(x) = x^3 - 3x^2$. What are all values of *c* that satisfy the conclusion of the Mean Value Theorem on the closed interval [0,3]?

X	-5	-4	-3	-2	-1	0
g(x)	10	5	2	3	1	0
g'(x)	-3	-1	4	1	-2	-3

5. Let g be a differentiable function. The table above gives values of g and its derivative g' at selected values of x. Is there a number c in the closed interval [-5, -3] such that g'(c) = -4? Justify your answer.

t (years)	2	3	5	7	10
H(t) (meters)	1.5	2	6	11	15

6. The height of a tree at time t is given by a twice-differentiable function H, where H(t) is measured in meters and t is measured in years. Explain why there must be at least one time t, for 2 < t < 10, such that H'(t) = 2.

7. Given $f(x) = \frac{1}{3}x^3 - x^2 - 3x + 2$. $f'(x) = $
8. Use your calculator to graph $f(x)$ and $f'(x)$ in the following window: x:[-7.9, 7.9], y:[-10, 10]. Sketch below.
9. The relative maximum and minimum values of $f(x)$ occur at $x =$
10. $f'(x) = 0$ or $f'(x)$ is undefined at $x =$
11. $f(x)$ is increasing on what interval(s)?
12. $f'(x)$ is positive on what interval(s)?
13. $f(x)$ is decreasing on what interval(s)?
14. $f'(x)$ is negative on what interval(s)? 15. Given $f(x) = (x-1)^{\frac{2}{3}}$. $f'(x) =$
16. Use your calculator to graph $f(x)$ and $f'(x)$ in the following window: $x:[-1.975, 1.975], y:[-2, 2]$. Sketch below.
17. The relative maximum and minimum values of $f(x)$ occur at $x =$
18. $f'(x) = 0$ or $f'(x)$ is undefined at $x =$
19. $f(x)$ is increasing on what interval(s)?
20. $f'(x)$ is positive on what interval(s)?
21. $f(x)$ is decreasing on what interval(s)?
22. $f'(x)$ is negative on what interval(s)?
Use your answers to problems $7 - 22$ to complete the following statements:
23. The relative maximum and minimum values of f occurred when

24. The function *f* is increasing when ______25. The function *f* is decreasing when ______